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The variational method in thermodynamic pertur�
bation theory is actively used for calculating the ther�
modynamic properties of metal melts. In many cases,
it is the model of hard spheres (HSs) [1–5] that is most
frequently used as the reference system, which makes
it possible to obtain reasonably good quantitative
results despite its simplicity. The use of other reference
systems (the system with inverse�power potential [6],
the model of single�component plasma [6], the model
of charged hard spheres [7], and the system with a
hard�core (HC) Yukawa potential [8]), as a rule,
results in minor improvement of the results of calcula�
tion in comparison with the use of the HS reference
system and, sometimes, even to their degradation [6].
It should be noted that all listed reference systems dif�
ferent from the HSs are systems with pure repulsive
pair potentials, and the correction of the HS model
occurs only due to “softening” of the repulsive part of
the potential. Therefore, it is of interest to choose the
reference system with the presence of attraction forces
between the atoms and to analyze its applicability
within the framework of the variational method.

In this work, as the reference system, we take the
square�well (SW) model in which the pair potential
has the attractive part:

(1)

where σ is the HC diameter; ε and σ(λ – 1) are the
depth and width of the well, respectively; ϕSW(r) refers
to the family of the HC potentials described by the for�
mula
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From Eqs. (1) and (2), it follows that

(3)

The Fourier image φSW(r) is

(4)

where x = qσ.

We use the SW reference system described in two
different variants of the theory of fluids: in the ran�
dom�phase approximation (RPA) and in the mean
spherical approximation (MSA). The first approach
was previously proposed in [9, 10]. The second
approach is proposed in this study. The subsequent
transformations are given in this study in general form
for both considered variants of description of the SW
model.

In the RPA, the direct correlation function c(r) and
its Fourier image c(q) in the direct and reciprocal
space, respectively, are written as follows:

(5)

(6)

where β = (kВT)–1, kВ is the Boltzmann constant, Т is
the absolute temperature, ϕ1(r) is the part of the pair
potential being the perturbation with respect to the
pair potential of the system chosen in the framework of
the RPA reference system, the accessory to which is
designated by the subscript 0.

For HC potential (2), Eqs. (5) and (6) are trans�
formed to the following form:
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(7)

(8)

For describing cHS(r) and cHS(q), we use the known
analytical expressions (see [9, 10]).

In the MSA case, the expressions for the structure
functions are determined by the semi�analytical (SA)
method developed in [11–13] within the framework of
which c(r) and c(q) have more complex form than that
in the RPA

(9)

where bm are the coefficients determined from the
condition of vanishing pair correlation function g(r)
inside the HC (for our purposes, it suffices to take
n = 5)

(10)

(for odd values of n).

Let us write the right�hand side of Eqs. (8) and (10)
in general form as [Δc(q) – βφ(q)], where

(11)

For implementing the variational method, it is nec�
essary to have convenient (desirably analytical)
expressions for the structural factor a(q) and the
entropy S of the chosen reference system.

The structural factor of the fluid SW within the
framework of the chosen approximations is written in
general form as follows:
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where ρ is the average atomic density.

For finding SSW, we express the SW thermody�
namic characteristics of fluid through its correspond�
ing HS characteristics:

(13)

(14)

(15)

where E is the internal energy; U is the potential
energy; and ΔESW, ΔUSW, ΔSSW are the additives
caused by the difference between the SW and HS
models.

Further, for deriving the ΔSSW contribution, we use
the thermodynamic relation

(16)

written as

(17)

Because UHS = 0, Eq. (14) results in ΔUSW = USW.
On the other hand, the transition from the HS poten�
tial to the SW potential does not change the kinetic
energy in the system and, hence, ΔESW = ΔUSW. As a
result, we come to the equality ΔESW = USW, which
enables us to rewrite Eq. (17) as follows:

(18)

(from now on, all thermodynamic values are written
per atom), where

(19)

Using the Fourier relation between g(r) and a(q),
we transform Eq. (19) to the form
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From Eqs. (20) and (12), we find

(21)

The integration  results in the following

expression:

(22)

where C is the integration constant found from the
condition that, at ε = 0 or at λ = 1, ΔSSW = 0:

(23)

As a result, we obtain

(24)

For the RPA case, a similar derivation is carried out
in [9], and the following expression as a special case of
Eq. (24) was obtained:

(25)
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For liquid metals, the Helmholtz energy F in the
variational method with the SW reference system is
determined by the inequality

(26)

where U is the sum of structure�dependent contribu�
tions to the potential energy of the system; Ue and Se

are the electron contributions to the internal energy
and the entropy, respectively. A detailed description of
the pseudo�potential approach used and the contribu�
tions to the right�hand side of Eq. (26) in the recipro�
cal space are given in [9, 10]. In the same studies, the
values of the parameters of the pseudo�potential are
given for Na.

The applicability of the new reference system in
two approximations (RPA and MSA) is analyzed by
the example of liquid Na at T = 373 К (ρ = 0.0036 a.u.
[14]). In Table 1, we list the values of the SW parame�
ters corresponding to the local minimum of the Helm�
holtz energy in each of the calculation variants. It
should be noted that, contrary to the SW–RPA case,
where the minimization was carried out on two
parameters at a fixed value of λ (see [9, 10]), the use of
the SW–MSA reference system enables us to carry out
the minimization on all three SW parameters. The
obtained thermodynamic properties corresponding to
the values of parameters from Table 1 are listed in
Table 2 in comparison with experimental data [15] and
with the results of the HS variational method, where
the minimum of the Helmholtz energy was achieved
for σ = 6.254 a.u.

The analysis of the results of calculation of the
thermodynamic properties shows that the use of the
SW reference system in both variants of calculation
(SW–RPA and SW–MSA) gives a deeper minimum of
the free energy, but, at the same time, the agreement
with the experimental data is worse than with using the
HS reference system. The agreement with the experi�
ment worsens in this case with increasing the depth of
this minimum, i.e., when passing from SW–MSA to
SW–RPA.

The best agreement with the experiment of the
results of the HS variational method is related to the

F 3
2
��kBT Ue U〈 〉SW T SSW Se+( ),–+ +≤

Table 1. Values of SW parameters corresponding to a free�
energy minimum of liquid Na at T = 373 K using various
approaches to the description of the SW reference system

Approximations σ, a.u. λ ε, a.u.

RPA 6.215 1.926 –0.000365

MSA 6.149 1.751 –0.000319

Table 2. Thermodynamic properties of liquid Na at T = 373 K obtained by the variational method with various reference
systems and the experimental data of [15]

Parameter SW–RPA SW–MSA HS (SW–MSA) Experiment

F, eV –6.464 –6.426 –6.397 (–6.393) –6.399

E, eV –6.232 –6.190 –6.156 (–6.149) –6.149

S/kB 7.22 7.38 7.49 (7.59) 7.79

Note: In brackets we give the result close to the Helmholtz�energy minimum with the HS reference system obtained for σ = 6.10 a.u., λ = 1.751,
and ε = –0.000236 a.u.
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fact that, under its use, we additionally applied the
condition Р = 0 (where Р is the pressure in the system)
for fulfilling which we minimized the free energy also
on the atomic density instead of only on the parameter σ,
whereas its fixed experimental value is taken within the
framework of the SW variational method. In this case,
in minimizing the SW–MSA reference system on
the surface of the free energy σ–ε for the fixed value of
λ (1.751) to take a point close to the point of minimum
F obtained in the case of the HS reference system
(Table 2), the agreement with the experiment for the
internal energy and the entropy is improved in com�
parison with the HS variational calculation. At this

point, the packing density η equal to  becomes

close to ηHS at the minimum point under consider�
ation (approximately 0.43).

Thus, in this study, we principally showed the utility
of using the SW model as the reference system in the
variational method and that the use of the SW–MSA
variant is promising. For a more complete analysis of
the accuracy of the proposed approach, we further
assume to carry out detailed investigation of the region
of variation of parameters and an additional variation
of the free energy with the melt atomic density. In
addition, an increase in the number of objects of inves�
tigation (other pure metals and binary systems) can
introduce greater clarity when analyzing the service�
ability of the SW–MSA reference system.
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