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Abstract: The procedure suggested previously for the description of the square-well (SW) fluid within the framework
of the mean spherical approximation is applied to calculate the structure factors of pure Na, pure K, and
0.5Na-0.5K alloy in liquid state. It is shown that our variations of the SW depth and SW width enable us to
achieve a good agreement between calculated and experimental structure factors. The procedure under
consideration gives more accurate results than the random phase approximation for the same values of
the SW parameters.
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1. Introduction

Recently, for a model fluid with particles interacting bymeans of a pair potential with the hard-core (HC) repul-sive part, we suggested to represent the direct correlationfunction, c(r), inside the HC, as an expansion in poly-nomial series [1]. Then we applied this approach withinthe mean spherical approximation (MSA) [2] to the fluidwith the square-well (SW) pair potential, φSW(r). This ap-proach allows the omission of the Ornstein-Zernike (OZ)integral equation in real space [3] because all charac-teristics can be expressed analytically by means of theexpansion coefficients, which are defined numerically from
∗E-mail: ned67@mail.ru

the condition that the pair correlation function, g(r), mustbe equal to zero inside the HC. It was shown that witha sufficient number of terms in the expansion our resultscould achieve full agreement with the results of Smith,Henderson and Tago [4], which were obtained numericallyby solving the OZ equation with the MSA closure (thenecessary number of expansion terms is dependent on theinput data: temperature, T , atomic density, ρ, and the SWparameters).In the case of binary SW fluids, the OZ integral equa-tion results for seven closures under consideration [5] showthat the MSA closure gives the best agreement with theMonte Carlo computer simulation results given by Lee andChao [6].In Ref. [1], we expanded our SW-MSA approach to binarysystems. Here, the binary liquid metal alloy is repre-
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sented as an SW mixture and the formalism under ques-tion is applied to calculate the structure of the equiatomicNa-K alloy at T=373 K.Previously, descriptions of binary liquid metal alloyswithin the SW model [7–10] and the SW model witha repulsive SW barrier [11, 12] have been performedin the framework of the random phase approximation(RPA) [13, 14]:
c(r) = { cHS(r), r < σ,

−βφ(r), r > σ, (1)
where cHS(r) is the direct correlation function of thehard-sphere (HS) fluid obtained in the closed form byWertheim [15] and Thiele [16] in the Percus-Yevick (PY)approximation [17]; φ(r)- HC-based pair potential; σ- HCdiameter; β = (kBT )−1; kB - Boltzmann constant.The RPA leads to an unphysical behaviour of g(r) insidethe hard core. Our procedure is more physically reason-able than the RPA. It gives a correction to the RPA similarto a correction arising in the optimized random phase ap-proximation (ORPA) [18], which becomes equivalent to theMSA when it is applied to a fluid with a HC-based pairpotential.
2. Theory
2.1. One-component SW fluid
The SW pair potential is being written as follows:

φSW(r) =

∞, r < σ,
ε, σ 6 r < Aσ,0, r > Aσ,

(2)
where ε (< 0) is the SW depth; σ (A− 1) - SW width.The Fourier transform of φSW(r) at r > σ is

φ̃SW(q) = 4πε [sin(Ax)− sin(x)
− Ax cos(Ax) + x cos(x)] /q3 , (3)

where φ(r) is the part of φ(r) at r > σ ; x = qσ .In the long-wave limit, we have
φ̃SW(0) = 43πσ 3ε(A3 − 1). (4)

The approach of Ref. [1] is
c(r) =

cHS(r) + n∑
m=0bm

( r
σ

)m
, r < σ,

−βφ(r), r > σ,
(5)

where (n+ 1) stands for the number of coefficients.
From Eq. (5), one can obtain the Fourier transform of the direct correlation function, c̃(q), [1]:

c̃(q) = c̃HS(q)− βφ̃(q) + (4π
q3
){n+2∑

m=1 x
2−m ∂m sin(x)

∂xm
n∑
l=0 bl

m−2∏
k=0 (l+ 1− k)+(n+1)/2∑

m=1
(−1)m+1(2m)!b2m−1

x2m−1
}
,

(for odd n), (6)

c̃(0) = c̃HS(0)− βφ̃(0)− 4πσ 3 n∑
m=0

bm
m+ 3 , (7)

where c̃HS(q) is the Fourier transform of cHS(r) given byWertheim-Thiele [15, 16].To satisfy the condition
g(r) = 0 at r < σ (8)

we minimize the sum of squares of g(r) taken in 5 pointsregularly distributed within the interval r < σ at a finite
n using the following expression:

g(r) = 1 + 12π2ρ
∞∫

0
[S(q)− 1] sin(qr)

qr q2dq, (9)
where S(q) stands for the structure factor:

S(q) = 11− ρ c̃(q) . (10)
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As a result, the values of coefficients bm(m = 0,…, n) aredefined.
2.2. Two-component SW fluid
The partial pair potentials, φij (r), for the SW mixture are

φijSW(r) =

∞, r < σij ,
εij , σij 6 r < Aijσij ,0, r > Aijσij ,

(11)
where σij , εij , Aij are the partial SW parameters.We use the additive binary SW mixture (i, j = 1, 2) [7–10],for which

σ12 = (σ11 + σ22)/2,
ε12 = −√ε11ε22 and εii 6 0, (12)
A12 = (A11σ11 + A22σ22)/(σ11 + σ22).

The Fourier transform of Eq. (11) at r > σij gives
φ̃ij SW(q) = 4πεij [sin(Aijxij )− sin(xij )

− Aijxij cos(Aijxij ) + xij cos(xij )] /q3 , (13)

φ̃ij SW(0) = 43πσ 3
ijεij (A3

ij − 1) , (14)
where xij = qσij .For the partial direct correlation functions, cij (r), the ap-proach of Ref. [1] is represented as follows:

cii(r) =
ciiHS(r) + n∑

m=0biim
(
r
σii

)m
, r < σii,

−βφii(r), r > σii,
(15)

c12(r) =

c12HS(r) + b120, λ12 > r,

c12HS(r) + n∑
m=0b′12m(r − λ12)m+1/r, λ12 6 r < σ12,

−βφ12(r), r > σ12, (16)where cijHS(r) are the HS partial direct correlation func-tions in the PY closed form [19]; λ12 = (σ22 − σ11)/2 at
σ22 > σ11; b′ijm = bijm/σmij .

The Fourier transforms of the partial direct correlation functions (15) and (16) are [1]

c̃ii(q) = c̃iiHS(q)− βφ̃ii(q) + (4π
q3
){n+2∑

m=1 x
2−m ∂m sin(xii)

∂xmii

n∑
l=0 biil

m−2∏
k=0 (l+ 1− k) + (n+1)/2∑

m=1
(−1)m+1(2m)!bii(2m−1)

x2m−1
ii

}
,

(for odd n), (17)

c̃12(q) = c̃12HS(q)− βφ̃12(q) + (4π
q3
){n+2∑

m=1 q
2−m ∂m sin(x12)

∂xm12
n∑
l=0 b

′12lσ l−m+211
m−2∏
k=0 (l+ 1− k)

+ n∑
m=1

(m+ 1)!b′12m
qm

∂m sin(y12)
∂ym12

}
, (18)

c̃ii(0) = c̃iiHS(0)− βφ̃ii(0)− 4πσ 3
ii

n∑
m=0

biim
m+ 3 , (19)
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c̃12(0) = c̃12HS(0)− βφ̃12(0)− 4πσ 312
[
b′′1203 + b′′12112 (6α−1 − 4 + α − δγ3)+ b′′12220 (10α−1 − 10 + 5α − α2

+δ2γ3)+ b′′12330 (15α−1 − 20 + 15α − 6α2 + α3 − δ3γ3)+ b′′12442 (21α−1 − 35 + 35α − 21α2 + 7α3 − α4
+δ4γ3)+ b′′12556 (28α−1 − 56 + 70α − 56α2 + 28α3 − 8α4 + α5 − δ5γ3)] , (for n = 5), (20)

where y12 = qλ12; c̃ijHS(q) represent the Fourier transforms of the PYHS partial direct correlation functions in theanalytical form [20, 21]; b′′12m = b′12mσm11; α = σ12/σ11; δ = λ12/σ11; γ = δ/α .
Condition (8) for the binary system is being rewritten asfollows:

gij (r) = 0, r < σij . (21)
Coefficients bijm are determined in a similar way to thecase of the one-component fluid by means of

gij (r) = 1 + 12π2ρ√cicj
∞∫

0
[Sij (q)− δij ] sin(qr)

qr q2dq,
(22)where ci is the concentration of the i-th component; Sij (q)- Ashcroft-Langreth (AL) partial structure factors [20]:

Sii(q) = 1− cjρ c̃jj (q)[1− c1ρ c̃11(q)] [1− c2ρ c̃22(q)]− c1c2 ρ2c̃212(q) ,(23)

S12(q) = √c1c2ρ c̃12(q)[1− c1ρ c̃11(q)] [1− c2ρ c̃22(q)]− c1c2 ρ2c̃212(q) .(24)
3. Results and discussion
For the pure liquid Na and K at T=373 K we take valuesof σ obtained previously in Ref. [22] by the pseudopotentialmethod in conjunction with the variational method withthe HS reference system. The atomic densities are takenfrom experiment [23]. Input data for Na and K are givenin Tab. 1. Our calculations are carried out for n = 5.

Table 2. Input SW parameters for the liquid equiatomic Na-K alloy at
T=373 K.

σii (a.u.) Aii εii (a.u.)Na 6.1027 1.400 -0.00100K 7.7500 1.479 -0.00025

Table 1. Input data for liquid Na and K at T=373 K in atomic units
(a.u.).

σ (a.u.) ρ (a.u.)Na 6.1027 0.0036K 7.7500 0.0019
In Fig. 1 it is shown how S(q) of liquid Na is changedwith the SW depth at the constant SW width (a) and withthe SW width at the constant SW depth (b).The results of varying the SW parameters for S(q) calcu-lations of liquid K are plotted in Fig. 2.The hard-sphere structure factors, SHS(q), (ε = 0 or A =0) demonstrated in Figs. 1 and 2 are obtained at the same
σ and ρ as used for the corresponding SW calculations(Tab. 1).To consider Na-K alloy we put c1 = c2 = 0.5, T=373 K,
ρ = 0.0024 a.u. [23], and n = 5. Each partial SW param-eter between atoms of the same kind is taken to be equalto the corresponding parameter in the pure metal. Amongsets of parameters used for pure metals, values of A and εthat lead to better agreement with experimental structurefactors (Figs. 1, 2) are chosen for the alloy calculations.Input values of the SW parameters are listed in Tab. 2.The values of coefficients bm and bijm obtained at theseparameters for pure metals and the alloy under consider-ation are summarized in Tabs. 3 and 4, respectively.We calculate the AL partial structure factors and the
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Figure 1. The structure factor of liquid Na at T=373 K for different
values of A and ε (a.u.) (2: A=1.557, ε = −0.00025;
3: A=1.557, ε = −0.0005; 4: A=1.557, ε = −0.001; 5:
A=1.47, ε = −0.001; 6: A=1.4, ε = −0.001) in comparison
with SHS(q) (1) and experiment (7) [24].

Figure 2. The structure factor of liquid K at T=373 K for different val-
ues of A and ε (a.u.) (2: A=1.613, ε = −0.001; 3: A=1.523,
ε = −0.001; 4: A=1.479, ε = −0.00025) in comparison
with SHS(q) (1) and experiment (5) [25].

Table 3. Coefficients bm (a.u.) obtained for pure Na and K employing
the input data from Tabs. 1-2.

b0 b1 b2 b3 b4 b5Na 3.642 6.699 -46.031 42.457 8.877 -16.545K -0.277 10.767 -50.872 95.783 -81.597 26.011

Table 4. Coefficients bijm (a.u.) obtained for the equiatomic Na-K
alloy at T=373 K.

m 0 1 2 3 4 5
bijm
b11m -0.079 -2.131 0.376 0.644 0.210 -0.002
b22m -1.111 1.291 -0.346 -0.489 0.135 0.307
b12m -0.989 -0.717 -0.572 1.941 -0.050 -0.118

Bhatia-Thornton (BH) [26] partial structure factors,
SNN (q) = c1S11(q) + c2S22(q) + 2√c1c2S12(q), (25)

Scc(q) = c1c2[c2S11(q) + c1S22(q)− 2√c1c2S12(q)], (26)

SNc(q) = c1c2
[
S11(q)− S22(q) + (c2 − c1)S12(q)

√c1c2
]
, (27)

and compare them (Figs. 3, 4) with the RPA results ob-tained for the same values of ρ and SW parameters.The total structure factor for Na-K alloy is calculated fromthe partial structure factors by the standard way usingatomic X-ray scattering factors for Na and K [27], and ispresented in Fig. 5.It is obvious from Figs. 3-5 that our MSA-SW formalismleads to a significant discrepancy with the RPA results.
4. Conclusion
From the results for pure liquid Na and K (Figs. 1, 2)it follows that variation of the SW parameters leads toa good agreement between calculated and experimentalstructure factors, but not in the case of the HS or infi-nite limits. This provides an option to use the SW modelas a reference system in the framework of the variationalmethod for liquid metal state calculations.Fig. 5 shows that the results obtained in our approach aremore accurate than those for the RPA.
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Figure 3. The Ashcroft-Langreth partial structure factors of the liquid
equiatomic Na-K alloy at T=373 K (1: SNaNa(q); 2: SKK(q);
3: SNaK(q)). Solid lines show our approach and dotted
lines represent RPA.

Figure 4. The Bhatia-Thornton partial structure factors of the liquid
equiatomic Na-K alloy at T=373 K (1:SNN (q); 2: Scc(q); 3:
SNc(q)). Solid lines show our approach and dotted lines
represent RPA.

Figure 5. The total structure factor of the liquid equiatomic Na-K alloy
(1: RPA; 2: our approach; 3: experiment [25]).
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